Decision and Control

How can we create systems that can learn from their environment, take decisions based on what is learned and navigate in this environment autonomously in the face of uncertainty? Decision and Control has considered aspects of these questions for many years. Applications are found everywhere: robotics, economics, biology, manufacturing and other academic fields such as computer science and communications.

This is a mathematical discipline, drawing on a large range of fields including functional analysis, game theory, probability, statistics and optimization.

Visit the Decision and Control site >>



It is commonplace to observe students slinging backpacks across their shoulders, while automatically adjusting their balance to maintain eye contact with the person they are conversing with. Clearly, the balance control system is capable of effortless adaptation to large dynamic loads while maintaining stability. It is easy to overlook the challenges and difficulty of creating and engineering a man-made system with similar capabilities. The central mechanism is feedback, the ability to sense and react to one’s environment. While feedback lies at the heart of most research done in D&C, a significant portion of the group’s research concerns the environmental information required before guarantees can be made about the quality of our solutions.

Networks and Control

Can we wirelessly network cars so they never collide, or operate green buildings so that resource usage and environmental impact are minimized? How should we control networks so information flows efficiently over them? These questions represent challenges in creating future wireless and sensor networks for information flow, or large smart systems that interact with their environment, sometimes called cyberphysical systems, networked control systems or embedded systems.

Social, Economic and Technological Systems

One branch of this research concerns the development of new communication systems and infrastructures. We study the increased use of the electromagnetic spectrum by license-exempt wireless devices, investigating how we can plan for a future that includes ubiquitous communication. Another direction concerns the creation of theory and algorithms to contend with planning and operational decisions in socio-economic systems. A current Department of Energy project concerns the next generation of engineering-economic systems. A key question is, how can we create energy markets that are efficient and reliable?

Visit the Decision and Control website.


Group Contact:
Angie Ellis: 153 CSL
Phone: 217-300-1910

Research Faculty


Decision and Control Research News

U.S. Deputy Secretary of Defense tours Illinois research facilities

05/18/2017 - 14:15   Work observed Illinois robotics research in progress at the Intelligent Robotics Lab in the Coordinated Science Lab, and visited the Beckman Institute for Advanced Science and Technology to learn about research advances in materials.
Naira Hovakimyan

Hovakimyan named W. Grafton and Lillian B. Wilkins Professor

09/09/2015 - 19:00   Hovakimyan’s research focuses on robotics, game theory, networks of autonomous systems, and theory of robust adaptive control and estimation, as well as control in the presence of limited information.
News story image

Bibbidi Bobbidi Bots: ASPIRE to improve lives of senior citizens

08/12/2015 - 19:00   The goal of ASPIRE is to develop co-robots that can assist the elderly with activities of daily living and other chores.
News story image

Hovakimyan receives Society of Women Engineers 2015 Achievement Award

08/03/2015 - 19:00   The award recognizes Hovakimyan’s significant contributions to mathematical control theory and its application in safety-critical systems of aerospace, mechanical, electrical, petroleum and biomedical engineering.
News story image

New robotic lawn mowing technology aims to deliver freshly cut yards with little set-up

07/12/2015 - 19:00   Junho Yang, 32, a PhD candidate at UIUC, alongside Professor Soon-Jo Chung, Professor Seth Hutchinson and agriculture implement manufacturer John Deere, is working on “an omnidirectional-vision-based system to detect the containment status of a robotic lawn mower.”