10/6/2016 August Schiess, CSL
Written by August Schiess, CSL
Changing, unpredictable behavior challenges computer-based systems, especially in large, interconnected networks. Volatile behavior—such as wind variances that affect the performance of a network of wind turbines—inspired a team of CSL researchers to investigate the ways systems communicate and collaborate with one other in the face of adversarial conditions.
“Wind turbines, for example, work in a team to produce electricity. We want to figure out ways to group them, set their blade angles and rotation speeds, so that we’re maximizing power output, even given the nature of the wind blowing different ways, at different times, and at different speeds,” said Beck, an associate professor of industrial and enterprise systems.
Since the grant started earlier this year, graduate student Lucas Buccafusca has looked at the dynamics of wind turbine systems, developing techniques that capitalize on the symmetry of the wind turbine systems to maximize power output, assuming the wind is the same. Future work will focus on varying wind.
This work applies to many other systems, including the power grid, traffic networks, environmental monitoring networks, and more.
“We’re trying to make the dynamic systems communicate optimally and with the minimum amount of energy, in the face of uncertainty and disturbances,” said Nedich.