DCL Seminar: Elisa Franco - Programming Dynamic Behaviors in Molecular Systems and Materials

Event Type
Seminar/Symposium
Sponsor
Decision and Control Laboratory, Coordinated Science Laboratory
Location
CSL Auditorium, Room B02
Date
February 6, 2019 3:00 PM
Speaker
Elisa Franco, Ph.D., University of California, Los Angeles
Cost
Registration
Contact
Linda Stimson
Email
ls9@illinois.edu
Phone
217-333-9449

Decision and Control Laboratory

Coordinated Science Laboratory

 

Elisa Franco

Mechanical and Aerospace Engineering

University of California, Los Angeles

 

3pm, CSL Auditorium (B02)

Wednesday, February 6, 2019

Title: Programming Dynamic Behaviors in Molecular Systems and Materials

Abstract: Biological cells can adapt, replicate, and repair in ways that are unmatched by man-made devices.  At the core of these complex behaviors are many dynamic processes that are difficult to deconstruct, and lack the modularity of electrical and mechanical systems. For example, shape adaptation in cells arises from the interplay of receptors, gene networks, and self-assembling cytoskeletal scaffolds. While the interplay of elements performing sensing, control, and actuation is apparent, it is not clear how to program similar behaviors in biological or synthetic matter using a minimal number of components and reactions. To address this general challenge, we follow a reductionist approach and we combine a systems-engineering theoretical analysis with experiments on nucleic acid systems. Nucleic acids are versatile molecules whose interactions and kinetic behaviors can be rationally designed from their sequence content; further, they are relevant in a number of native and engineered cellular pathways, as well as in biomedical and nanotechnology applications. I will illustrate our approach with two examples. The first is the construction of self-assembling DNA scaffolds that can be programmed to respond to environmental inputs and to canonical molecular signal generators such as pulse generators and oscillators. The second is the design of molecular feedback controllers to achieve homeostatic behavior and reference tracking. I will stress how mathematical modeling and control theory are essential to help identify design principles, to guide experiments, and to explain observed phenomena.

Bio: Elisa Franco is an Associate Professor in Mechanical and Aerospace Engineering at UCLA. She received a Ph.D. in Control and Dynamical Systems from the California Institute of Technology in 2011. She also received a Ph.D. in Automation and a Laurea degree (cum laude) in Power Systems Engineering from the University of Trieste, Italy.  Prof. Franco's main interests are in the areas of biological feedback and DNA nanotechnology: her research focuses on design, modeling, and synthesis of circuits and responsive materials using nucleic acids and proteins.  She is the recipient of an NSF CAREER award and a Hellman Fellowship.